Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 21(3): 397-406, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965958

RESUMO

Histone deacetylases (HDACs) play critical roles in epigenomic regulation, and histone acetylation is dysregulated in many human cancers. Although HDAC inhibitors are active in T-cell lymphomas, poor isoform selectivity, narrow therapeutic indices, and a deficiency of reliable biomarkers may contribute to the lack of efficacy in solid tumors. In this article, we report the discovery and preclinical development of the novel, orally bioavailable, class-I-selective HDAC inhibitor, OKI-179. OKI-179 and its cell active predecessor OKI-005 are thioester prodrugs of the active metabolite OKI-006, a unique congener of the natural product HDAC inhibitor largazole. OKI-006, OKI-005, and subsequently OKI-179, were developed through a lead candidate optimization program designed to enhance physiochemical properties without eroding potency and selectivity relative to largazole. OKI-005 displays antiproliferative activity in vitro with induction of apoptosis and increased histone acetylation, consistent with target engagement. OKI-179 showed antitumor activity in preclinical cancer models with a favorable pharmacokinetic profile and on-target pharmacodynamic effects. Based on its potency, desirable class I HDAC inhibition profile, oral bioavailability, and efficacy against a broad range of solid tumors, OKI-179 is currently being evaluated in a first-in-human phase I clinical trial with plans for continued clinical development in solid tumor and hematologic malignancies.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias , Acetilação , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Neoplasias/tratamento farmacológico
3.
Br J Pharmacol ; 176(18): 3508-3514, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30820936

RESUMO

The production, quality control, and degradation of proteins are a tightly controlled process necessary for cell health. In order to regulate this process, cells rely upon a network of molecular chaperone proteins that bind misfolded proteins and help them fold correctly. In addition, some molecular chaperones can target terminally misfolded proteins for degradation. Neurons are particularly dependent upon this "proteostasis" system, failures in which lead to neurodegenerative disease. In this review, we identify opportunities for modulating molecular chaperone activity with small molecules, which could lower the burden of misfolded protein within neurons, reducing cell death and ameliorating the effects of neurodegeneration. LINKED ARTICLES: This article is part of a themed section on Therapeutics for Dementia and Alzheimer's Disease: New Directions for Precision Medicine. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.18/issuetoc.


Assuntos
Proteínas de Choque Térmico/metabolismo , Doenças Neurodegenerativas/metabolismo , Animais , Humanos , Proteostase
4.
Brain ; 141(5): 1286-1299, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481671

RESUMO

Many genetic neurological disorders exhibit variable expression within affected families, often exemplified by variations in disease age at onset. Epistatic effects (i.e. effects of modifier genes on the disease gene) may underlie this variation, but the mechanistic basis for such epistatic interactions is rarely understood. Here we report a novel epistatic interaction between SPAST and the contiguous gene DPY30, which modifies age at onset in hereditary spastic paraplegia, a genetic axonopathy. We found that patients with hereditary spastic paraplegia caused by genomic deletions of SPAST that extended into DPY30 had a significantly younger age at onset. We show that, like spastin, the protein encoded by SPAST, the DPY30 protein controls endosomal tubule fission, traffic of mannose 6-phosphate receptors from endosomes to the Golgi, and lysosomal ultrastructural morphology. We propose that additive effects on this pathway explain the reduced age at onset of hereditary spastic paraplegia in patients who are haploinsufficient for both genes.


Assuntos
Epistasia Genética/genética , Mutação/genética , Proteínas Nucleares/genética , Paraplegia Espástica Hereditária/genética , Espastina/genética , Adulto , Idade de Início , Antígenos CD8/genética , Antígenos CD8/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa/metabolismo , Células HeLa/ultraestrutura , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/ultraestrutura , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestrutura , Transporte Proteico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Cell Biol ; 216(5): 1337-1355, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28389476

RESUMO

Contacts between endosomes and the endoplasmic reticulum (ER) promote endosomal tubule fission, but the mechanisms involved and consequences of tubule fission failure are incompletely understood. We found that interaction between the microtubule-severing enzyme spastin and the ESCRT protein IST1 at ER-endosome contacts drives endosomal tubule fission. Failure of fission caused defective sorting of mannose 6-phosphate receptor, with consequently disrupted lysosomal enzyme trafficking and abnormal lysosomal morphology, including in mouse primary neurons and human stem cell-derived neurons. Consistent with a role for ER-mediated endosomal tubule fission in lysosome function, similar lysosomal abnormalities were seen in cellular models lacking the WASH complex component strumpellin or the ER morphogen REEP1. Mutations in spastin, strumpellin, or REEP1 cause hereditary spastic paraplegia (HSP), a disease characterized by axonal degeneration. Our results implicate failure of the ER-endosome contact process in axonopathy and suggest that coupling of ER-mediated endosomal tubule fission to lysosome function links different classes of HSP proteins, previously considered functionally distinct, into a unifying pathway for axonal degeneration.


Assuntos
Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Paraplegia Espástica Hereditária/metabolismo , Adulto , Animais , Células Cultivadas , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade
6.
PLoS One ; 11(12): e0168294, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28006827

RESUMO

Recycling of cargos from early endosomes requires regulation of endosomal tubule formation and fission. This regulation is disrupted in cells depleted of the microtubule severing enzyme spastin, causing elongation of endosomal tubules and mis-trafficking of recycling endosomal cargos such as the transferrin receptor. Spastin is encoded by SPAST, mutations in which are the most frequent cause of autosomal dominant hereditary spastic paraplegia, a condition characterised by a progressive loss of lower limb function resulting from upper motor neuron axonopathy. Investigation of molecular factors involved in endosomal tubule regulation is hindered by the need for manual counting of endosomal tubules. We report here the development of an open source automated system for the quantification of endosomal tubules, using ImageJ and R. We validate the method in cells depleted of spastin and its binding partner IST1. The additional speed and reproducibility of this system compared with manual counting makes feasible screens of candidates to further understand the mechanisms of endosomal tubule formation and fission.


Assuntos
Adenosina Trifosfatases/metabolismo , Endossomos/metabolismo , Fibroblastos/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Pulmão/metabolismo , Microscopia de Fluorescência/métodos , Microtúbulos/metabolismo , Automação , Células Cultivadas , Fibroblastos/citologia , Imunofluorescência , Células HeLa , Humanos , Pulmão/citologia , Espastina
7.
Mol Cancer Ther ; 14(5): 1117-29, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25758253

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive disease with a poor prognosis. Advances in the treatment of TNBC have been hampered by the lack of novel effective targeted therapies. The primary goal of this study was to evaluate the efficacy of targeting Aurora kinase A (AurA), a key regulator of mitosis, in TNBC models. A secondary objective was to determine the role of the p53 family of transcriptional regulators, commonly mutated in TNBC, in determining the phenotypic response to the AurA inhibitor alisertib (MLN8237). Alisertib exhibited potent antiproliferative and proapoptotic activity in a subset of TNBC models. The induction of apoptosis in response to alisertib exposure was dependent on p53 and p73 activity. In the absence of functional p53 or p73, there was a shift in the phenotypic response following alisertib exposure from apoptosis to cellular senescence. In addition, senescence was observed in patient-derived tumor xenografts with acquired resistance to alisertib treatment. AurA inhibitors are a promising class of novel therapeutics in TNBC. The role of p53 and p73 in mediating the phenotypic response to antimitotic agents in TNBC may be harnessed to develop an effective biomarker selection strategy in this difficult to target disease.


Assuntos
Azepinas/administração & dosagem , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Pirimidinas/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Apoptose , Aurora Quinase A/antagonistas & inibidores , Azepinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Camundongos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Proteína Tumoral p73 , Ensaios Antitumorais Modelo de Xenoenxerto
8.
PLoS One ; 9(11): e113037, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25401499

RESUMO

BACKGROUND: The activation of the MAPK and PI3K/AKT/mTOR pathways is implicated in the majority of cancers. Activating mutations in both of these pathways has been described in colorectal cancer (CRC), thus indicating their potential as therapeutic targets. This study evaluated the combination of a PI3K/mTOR inhibitor (PF-04691502/PF-502) in combination with a MEK inhibitor (PD-0325901/PD-901) in CRC cell lines and patient-derived CRC tumor xenograft models (PDTX). MATERIALS AND METHODS: The anti-proliferative effects of PF-502 and PD-901 were assessed as single agents and in combination against a panel of CRC cell lines with various molecular backgrounds. Synergy was evaluated using the Bliss Additivity method. In selected cell lines, we investigated the combination effects on downstream effectors by immunoblotting. The combination was then evaluated in several fully genetically annotated CRC PDTX models. RESULTS: The in vitro experiments demonstrated a wide range of IC50 values for both agents against a cell line panel. The combination of PF-502 and PD-901 demonstrated synergistic anti-proliferative activity with Bliss values in the additive range. As expected, p-AKT and p-ERK were downregulated by PF-502 and PD-901, respectively. In PDTX models, following a 30-day exposure to PF-502, PD-901 or the combination, the combination demonstrated enhanced reduction in tumor growth as compared to either single agent regardless of KRAS or PI3K mutational status. CONCLUSIONS: The combination of a PI3K/mTOR and a MEK inhibitor demonstrated enhanced anti-proliferative effects against CRC cell lines and PDTX models.


Assuntos
Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Sinergismo Farmacológico , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Benzamidas/farmacologia , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Feminino , Humanos , Immunoblotting , Camundongos , Camundongos Nus , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
J Dent ; 42(9): 1135-42, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24874952

RESUMO

OBJECTIVES: Whereas the psychosocial benefits of orthognathic treatment for the individual patient are established, there is little data relating to social perceptions in relation to changes in facial appearance as a result of combined orthodontic and orthognathic treatment. This study aimed to investigate the social impact of combined orthodontic-orthognathic surgical correction for class III malocclusion in Caucasian subjects. METHODS: This cross-sectional study compared perceptions of facial appearance prior to and after orthognathic correction of class III malocclusion. Eighty undergraduate students were shown photographs of four Caucasian subjects (2 male and 2 female) pre- and post-orthognathic class III correction. Observers were asked to rate these subjects in relation to four different outcomes: (i) social competence (SC); (ii) intellectual ability (IA); (iii) psychological adjustment (PA); (iv) attractiveness. A mixed-model analysis of variance (ANOVA) was calculated to determine the effect of each variable. RESULTS: Statistically significant differences were found in ratings of the same face before and after treatment. After treatment, faces were rated as more psychologically adjusted, more sociable, more likely to be successful and more attractive; with the mean psychological adjustment rating being associated with the most change (before treatment=8.06 [SD 2.30]; after treatment=6.64 [SD 2.03], t=2.04, p<0.001). CONCLUSIONS: After combined orthodontic-orthognathic correction of class III malocclusion in Caucasians, individuals are rated by young adults as being better adjusted both psychologically and socially, more likely to be successful and more attractive.


Assuntos
Atitude Frente a Saúde , Má Oclusão Classe III de Angle/psicologia , Grupo Associado , Percepção Social , Adolescente , Adulto , Beleza , Estudos Transversais , Face/anatomia & histologia , Feminino , Humanos , Inteligência , Masculino , Má Oclusão Classe III de Angle/cirurgia , Má Oclusão Classe III de Angle/terapia , Ortodontia Corretiva/métodos , Procedimentos Cirúrgicos Ortognáticos/métodos , Ajustamento Social , Habilidades Sociais , Adulto Jovem
10.
Clin Cancer Res ; 19(22): 6219-29, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24045180

RESUMO

PURPOSE: Results from clinical trials involving resistance to molecularly targeted therapies have revealed the importance of rational single-agent and combination treatment strategies. In this study, we tested the efficacy of a type 1 insulin-like growth factor receptor (IGF1R)/insulin receptor (IR) tyrosine kinase inhibitor, OSI-906, in combination with a mitogen-activated protein (MAP)-ERK kinase (MEK) 1/2 inhibitor based on evidence that the MAP kinase pathway was upregulated in colorectal cancer cell lines that were resistant to OSI-906. EXPERIMENTAL DESIGN: The antiproliferative effects of OSI-906 and the MEK 1/2 inhibitor U0126 were analyzed both as single agents and in combination in 13 colorectal cancer cell lines in vitro. Apoptosis, downstream effector proteins, and cell cycle were also assessed. In addition, the efficacy of OSI-906 combined with the MEK 1/2 inhibitor selumetinib (AZD6244, ARRY-142886) was evaluated in vivo using human colorectal cancer xenograft models. RESULTS: The combination of OSI-906 and U0126 resulted in synergistic effects in 11 of 13 colorectal cancer cell lines tested. This synergy was variably associated with apoptosis or cell-cycle arrest in addition to molecular effects on prosurvival pathways. The synergy was also reflected in the in vivo xenograft studies following treatment with the combination of OSI-906 and selumetinib. CONCLUSIONS: Results from this study demonstrate synergistic antiproliferative effects in response to the combination of OSI-906 with an MEK 1/2 inhibitor in colorectal cancer cell line models both in vitro and in vivo, which supports the rational combination of OSI-906 with an MEK inhibitor in patients with colorectal cancer. Clin Cancer Res; 19(22); 6219-29. ©2013 AACR.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Imidazóis/farmacologia , Pirazinas/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Receptor de Insulina/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Benzimidazóis/farmacologia , Butadienos/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Camundongos , Camundongos Nus , Transplante de Neoplasias , Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transplante Heterólogo
11.
Hum Mol Genet ; 22(22): 4616-26, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23814041

RESUMO

Mutants of neuroserpin are retained as polymers within the endoplasmic reticulum (ER) of neurones to cause the autosomal dominant dementia familial encephalopathy with neuroserpin inclusion bodies or FENIB. The cellular consequences are unusual in that the ordered polymers activate the ER overload response (EOR) in the absence of the canonical unfolded protein response. We use both cell lines and Drosophila models to show that the G392E mutant of neuroserpin that forms polymers is degraded by UBE2j1 E2 ligase and Hrd1 E3 ligase while truncated neuroserpin, a protein that lacks 132 amino acids, is degraded by UBE2g2 (E2) and gp78 (E3) ligases. The degradation of G392E neuroserpin results from SREBP-dependent activation of the cholesterol biosynthetic pathway in cells that express polymers of neuroserpin (G392E). Inhibition of HMGCoA reductase, the limiting enzyme of the cholesterol biosynthetic pathway, reduced the ubiquitination of G392E neuroserpin in our cell lines and increased the retention of neuroserpin polymers in both HeLa cells and primary neurones. Our data reveal a reciprocal relationship between cholesterol biosynthesis and the clearance of mutant neuroserpin. This represents the first description of a link between sterol metabolism and modulation of the proteotoxicity mediated by the EOR.


Assuntos
Colesterol/biossíntese , Drosophila melanogaster/metabolismo , Epilepsias Mioclônicas/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Neuropeptídeos/metabolismo , Polímeros/metabolismo , Serpinas/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Drosophila melanogaster/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Células HeLa , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Humanos , Camundongos , Proteínas Mutantes/metabolismo , Neurônios/metabolismo , Neuropeptídeos/genética , Desdobramento de Proteína , Serpinas/genética , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Resposta a Proteínas não Dobradas
12.
Clin Cancer Res ; 19(15): 4149-62, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23757356

RESUMO

PURPOSE: The mitogen-activated protein kinase (MAPK) pathway is a crucial regulator of cell proliferation, survival, and resistance to apoptosis. MEK inhibitors are being explored as a treatment option for patients with KRAS-mutant colorectal cancer who are not candidates for EGFR-directed therapies. Initial clinical results of MEK inhibitors have yielded limited single-agent activity in colorectal cancer, indicating that rational combination strategies are needed. EXPERIMENTAL DESIGN: In this study, we conducted unbiased gene set enrichment analysis and synthetic lethality screens with selumetinib, which identified the noncanonical Wnt/Ca++ signaling pathway as a potential mediator of resistance to the MEK1/2 inhibitor selumetinib. To test this, we used shRNA constructs against relevant WNT receptors and ligands resulting in increased responsiveness to selumetinib in colorectal cancer cell lines. Further, we evaluated the rational combination of selumetinib and WNT pathway modulators and showed synergistic antiproliferative effects in in vitro and in vivo models of colorectal cancer. RESULTS: Importantly, this combination not only showed tumor growth inhibition but also tumor regression in the more clinically relevant patient-derived tumor explant (PDTX) models of colorectal cancer. In mechanistic studies, we observed a trend toward increased markers of apoptosis in response to the combination of MEK and WntCa(++) inhibitors, which may explain the observed synergistic antitumor effects. CONCLUSIONS: These results strengthen the hypothesis that targeting both the MEK and Wnt pathways may be a clinically effective rational combination strategy for patients with metastatic colorectal cancer.


Assuntos
Benzimidazóis/administração & dosagem , Neoplasias Colorretais/tratamento farmacológico , Ciclosporina/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Apoptose , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Transdução de Sinais/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/genética
13.
Clin Cancer Res ; 19(1): 291-303, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23136197

RESUMO

PURPOSE: The Aurora kinases are a family of conserved serine-threonine kinases with key roles in mitotic cell division. As with other promising anticancer targets, patient selection strategies to identify a responsive subtype will likely be required for successful clinical development of Aurora kinase inhibitors. The purpose of this study was to evaluate the antitumor activity of the Aurora and angiogenic kinase inhibitor ENMD-2076 against preclinical models of breast cancer with identification of candidate predictive biomarkers. EXPERIMENTAL DESIGN: Twenty-nine breast cancer cell lines were exposed to ENMD-2076 and the effects on proliferation, apoptosis, and cell-cycle distribution were evaluated. In vitro activity was confirmed in MDA-MB-468 and MDA-MB-231 triple-negative breast cancer xenografts. Systematic gene expression analysis was used to identify up- and downregulated pathways in the sensitive and resistant cell lines, including within the triple-negative breast cancer subset. RESULTS: ENMD-2076 showed antiproliferative activity against breast cancer cell lines, with more robust activity against cell lines lacking estrogen receptor expression and those without increased HER2 expression. Within the triple-negative breast cancer subset, cell lines with a p53 mutation and increased p53 expression were more sensitive to the cytotoxic and proapoptotic effects of ENMD-2076 exposure than cell lines with decreased p53 expression. CONCLUSIONS: ENMD-2076 exhibited robust anticancer activity against models of triple-negative breast cancer and the candidate predictive biomarkers identified in this study may be useful in selecting patients for Aurora kinase inhibitors in the future.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Aurora Quinases , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Análise por Conglomerados , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Concentração Inibidora 50 , Camundongos , Camundongos Nus , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Pirazóis/toxicidade , Pirimidinas/toxicidade , Receptor ErbB-2/metabolismo , Transdução de Sinais , Ensaio Tumoral de Célula-Tronco , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Diabetes Care ; 28(12): 2896-900, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16306551

RESUMO

OBJECTIVE: The purpose of this study was to determine the effect of monochromatic infrared energy (MIRE) on plantar sensation in subjects with diabetic peripheral neuropathy. RESEARCH DESIGN AND METHODS: In this randomized, double-blind, placebo-controlled study, 39 subjects with diabetic peripheral neuropathy completed the 8-week study. Subjects received 30 min of active or placebo MIRE three times a week for 4 weeks. Plantar sensation was tested with monofilaments at the beginning of the study (M1), following 4 weeks of treatment (M2), and after an additional 4 weeks of nontreatment (M3). The number of sites that could sense the 5.07 monofilament was totaled at M1, M2, and M3. Data were analyzed using a special repeated-measures statistic followed by a post hoc Tukey-Kramer test. RESULTS: The average number of sites that patients could sense the 5.07 monofilament increased for both the active and placebo groups. There were significant gains from M1 to M2 (P < 0.002), no significant gains from M2 to M3 (P = 0.234), and significant gains from M1 to M3 (P < 0.002) for both the active and placebo groups. There were no significant differences between active and placebo groups at any measurement. CONCLUSIONS: Thirty minutes of active MIRE applied 3 days per week for 4 weeks was no more effective than placebo MIRE in increasing sensation in subjects with diabetic peripheral neuropathy. Clinicians should be aware that MIRE may not be an effective modality for improving sensory impairments in patients with diabetic neuropathy.


Assuntos
Neuropatias Diabéticas/fisiopatologia , Raios Infravermelhos , Sensação/efeitos da radiação , Idoso , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Placebos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...